MimIR 0.1
MimIR is my Intermediate Representation
Loading...
Searching...
No Matches
ll.cpp
Go to the documentation of this file.
2
3#include <deque>
4#include <fstream>
5#include <iomanip>
6#include <ranges>
7
8#include <absl/container/btree_set.h>
9
10#include <mim/plug/clos/clos.h>
11#include <mim/plug/math/math.h>
12#include <mim/plug/mem/mem.h>
13
14#include "mim/be/emitter.h"
15#include "mim/util/print.h"
16#include "mim/util/sys.h"
17
18#include "mim/plug/core/core.h"
19
20// Lessons learned:
21// * **Always** follow all ops - even if you actually want to ignore one.
22// Otherwise, you might end up with an incorrect schedule.
23// This was the case for an Extract of type Mem.
24// While we want to ignore the value obtained from that, since there is no Mem value in LLVM,
25// we still want to **first** recursively emit code for its operands and **then** ignore the Extract itself.
26// * i1 has a different meaning in LLVM then in Mim:
27// * Mim: {0, 1} = i1
28// * LLVM: {0, -1} = i1
29// This is a problem when, e.g., using an index of type i1 as LLVM thinks like this:
30// getelementptr ..., i1 1 == getelementptr .., i1 -1
31using namespace std::string_literals;
32
33namespace mim::ll {
34
35namespace clos = mim::plug::clos;
36namespace core = mim::plug::core;
37namespace math = mim::plug::math;
38namespace mem = mim::plug::mem;
39
40namespace {
41bool is_const(const Def* def) {
42 if (def->isa<Bot>()) return true;
43 if (def->isa<Lit>()) return true;
44 if (auto pack = def->isa_imm<Pack>()) return is_const(pack->arity()) && is_const(pack->body());
45
46 if (auto tuple = def->isa<Tuple>()) {
47 auto ops = tuple->ops();
48 return std::ranges::all_of(ops, [](auto def) { return is_const(def); });
49 }
50
51 return false;
52}
53
54const char* math_suffix(const Def* type) {
55 if (auto w = math::isa_f(type)) {
56 switch (*w) {
57 case 32: return "f";
58 case 64: return "";
59 }
60 }
61 error("unsupported foating point type '{}'", type);
62}
63
64const char* llvm_suffix(const Def* type) {
65 if (auto w = math::isa_f(type)) {
66 switch (*w) {
67 case 16: return ".f16";
68 case 32: return ".f32";
69 case 64: return ".f64";
70 }
71 }
72 error("unsupported foating point type '{}'", type);
73}
74
75// [%mem.M, T] => T
76// TODO there may be more instances where we have to deal with this trickery
77const Def* isa_mem_sigma_2(const Def* type) {
78 if (auto sigma = type->isa<Sigma>())
79 if (sigma->num_ops() == 2 && Axm::isa<mem::M>(sigma->op(0))) return sigma->op(1);
80 return {};
81}
82} // namespace
83
84struct BB {
85 BB() = default;
86 BB(const BB&) = delete;
87 BB(BB&& other) noexcept = default;
88 BB& operator=(BB other) noexcept { return swap(*this, other), *this; }
89
90 std::deque<std::ostringstream>& head() { return parts[0]; }
91 std::deque<std::ostringstream>& body() { return parts[1]; }
92 std::deque<std::ostringstream>& tail() { return parts[2]; }
93
94 template<class... Args>
95 std::string assign(std::string_view name, const char* s, Args&&... args) {
96 print(print(body().emplace_back(), "{} = ", name), s, std::forward<Args>(args)...);
97 return std::string(name);
98 }
99
100 template<class... Args>
101 void tail(const char* s, Args&&... args) {
102 print(tail().emplace_back(), s, std::forward<Args>(args)...);
103 }
104
105 friend void swap(BB& a, BB& b) noexcept {
106 using std::swap;
107 swap(a.phis, b.phis);
108 swap(a.parts, b.parts);
109 }
110
112 std::array<std::deque<std::ostringstream>, 3> parts;
113};
114
115class Emitter : public mim::Emitter<std::string, std::string, BB, Emitter> {
116public:
118
119 Emitter(World& world, std::ostream& ostream)
120 : Super(world, "llvm_emitter", ostream) {}
121
122 bool is_valid(std::string_view s) { return !s.empty(); }
123 void start() override;
124 void emit_imported(Lam*);
125 void emit_epilogue(Lam*);
126 std::string emit_bb(BB&, const Def*);
127 std::string prepare();
128 void finalize();
129
130 template<class... Args>
131 void declare(const char* s, Args&&... args) {
132 std::ostringstream decl;
133 print(decl << "declare ", s, std::forward<Args>(args)...);
134 decls_.emplace(decl.str());
135 }
136
137private:
138 std::string id(const Def*, bool force_bb = false) const;
139 std::string convert(const Def*);
140 std::string convert_ret_pi(const Pi*);
141
142 absl::btree_set<std::string> decls_;
143 std::ostringstream type_decls_;
144 std::ostringstream vars_decls_;
145 std::ostringstream func_decls_;
146 std::ostringstream func_impls_;
147};
148
149/*
150 * convert
151 */
152
153std::string Emitter::id(const Def* def, bool force_bb /*= false*/) const {
154 if (auto global = def->isa<Global>()) return "@" + global->unique_name();
155
156 if (auto lam = def->isa_mut<Lam>(); lam && !force_bb) {
157 if (lam->type()->ret_pi()) {
158 if (lam->is_external() || !lam->is_set())
159 return "@"s + lam->sym().str(); // TODO or use is_internal or sth like that?
160 return "@"s + lam->unique_name();
161 }
162 }
163
164 return "%"s + def->unique_name();
165}
166
167std::string Emitter::convert(const Def* type) {
168 if (auto i = types_.find(type); i != types_.end()) return i->second;
169
170 assert(!Axm::isa<mem::M>(type));
171 std::ostringstream s;
172 std::string name;
173
174 if (type->isa<Nat>()) {
175 return types_[type] = "i64";
176 } else if (auto size = Idx::isa(type)) {
177 return types_[type] = "i" + std::to_string(*Idx::size2bitwidth(size));
178 } else if (auto w = math::isa_f(type)) {
179 switch (*w) {
180 case 16: return types_[type] = "half";
181 case 32: return types_[type] = "float";
182 case 64: return types_[type] = "double";
183 default: fe::unreachable();
184 }
185 } else if (auto ptr = Axm::isa<mem::Ptr>(type)) {
186 auto [pointee, addr_space] = ptr->args<2>();
187 // TODO addr_space
188 print(s, "{}*", convert(pointee));
189 } else if (auto arr = type->isa<Arr>()) {
190 auto t_elem = convert(arr->body());
191 u64 size = 0;
192 if (auto arity = Lit::isa(arr->arity())) size = *arity;
193 print(s, "[{} x {}]", size, t_elem);
194 } else if (auto pi = type->isa<Pi>()) {
195 assert(Pi::isa_returning(pi) && "should never have to convert type of BB");
196 print(s, "{} (", convert_ret_pi(pi->ret_pi()));
197
198 if (auto t = isa_mem_sigma_2(pi->dom()))
199 s << convert(t);
200 else {
201 auto doms = pi->doms();
202 for (auto sep = ""; auto dom : doms.view().rsubspan(1)) {
203 if (Axm::isa<mem::M>(dom)) continue;
204 s << sep << convert(dom);
205 sep = ", ";
206 }
207 }
208 s << ")*";
209 } else if (auto t = isa_mem_sigma_2(type)) {
210 return convert(t);
211 } else if (auto sigma = type->isa<Sigma>()) {
212 if (sigma->isa_mut()) {
213 name = id(sigma);
214 types_[sigma] = name;
215 print(s, "{} = type", name);
216 }
217
218 print(s, "{{");
219 for (auto sep = ""; auto t : sigma->ops()) {
220 if (Axm::isa<mem::M>(t)) continue;
221 s << sep << convert(t);
222 sep = ", ";
223 }
224 print(s, "}}");
225 } else {
226 fe::unreachable();
227 }
228
229 if (name.empty()) return types_[type] = s.str();
230
231 assert(!s.str().empty());
232 type_decls_ << s.str() << '\n';
233 return types_[type] = name;
234}
235
236std::string Emitter::convert_ret_pi(const Pi* pi) {
237 auto dom = mem::strip_mem_ty(pi->dom());
238 if (dom == world().sigma()) return "void";
239 return convert(dom);
240}
241
242/*
243 * emit
244 */
245
247 Super::start();
248
249 ostream() << type_decls_.str() << '\n';
250 for (auto&& decl : decls_)
251 ostream() << decl << '\n';
252 ostream() << func_decls_.str() << '\n';
253 ostream() << vars_decls_.str() << '\n';
254 ostream() << func_impls_.str() << '\n';
255}
256
258 // TODO merge with declare method
259 print(func_decls_, "declare {} {}(", convert_ret_pi(lam->type()->ret_pi()), id(lam));
260
261 auto doms = lam->doms();
262 for (auto sep = ""; auto dom : doms.view().rsubspan(1)) {
263 if (Axm::isa<mem::M>(dom)) continue;
264 print(func_decls_, "{}{}", sep, convert(dom));
265 sep = ", ";
266 }
267
268 print(func_decls_, ")\n");
269}
270
271std::string Emitter::prepare() {
272 print(func_impls_, "define {} {}(", convert_ret_pi(root()->type()->ret_pi()), id(root()));
273
274 auto vars = root()->vars();
275 for (auto sep = ""; auto var : vars.view().rsubspan(1)) {
276 if (Axm::isa<mem::M>(var->type())) continue;
277 auto name = id(var);
278 locals_[var] = name;
279 print(func_impls_, "{}{} {}", sep, convert(var->type()), name);
280 sep = ", ";
281 }
282
283 print(func_impls_, ") {{\n");
284 return root()->unique_name();
285}
286
288 for (auto& [lam, bb] : lam2bb_) {
289 for (const auto& [phi, args] : bb.phis) {
290 print(bb.head().emplace_back(), "{} = phi {} ", id(phi), convert(phi->type()));
291 for (auto sep = ""; const auto& [arg, pred] : args) {
292 print(bb.head().back(), "{}[ {}, {} ]", sep, arg, pred);
293 sep = ", ";
294 }
295 }
296 }
297
298 for (auto mut : Scheduler::schedule(nest())) {
299 if (auto lam = mut->isa_mut<Lam>()) {
300 assert(lam2bb_.contains(lam));
301 auto& bb = lam2bb_[lam];
302 print(func_impls_, "{}:\n", lam->unique_name());
303
304 ++tab;
305 for (const auto& part : bb.parts)
306 for (const auto& line : part)
307 tab.print(func_impls_, "{}\n", line.str());
308 --tab;
309 func_impls_ << std::endl;
310 }
311 }
312
313 print(func_impls_, "}}\n\n");
314}
315
317 auto app = lam->body()->as<App>();
318 auto& bb = lam2bb_[lam];
319
320 if (app->callee() == root()->ret_var()) { // return
321 std::vector<std::string> values;
322 std::vector<const Def*> types;
323
324 for (auto arg : app->args()) {
325 if (auto val = emit_unsafe(arg); !val.empty()) {
326 values.emplace_back(val);
327 types.emplace_back(arg->type());
328 }
329 }
330
331 switch (values.size()) {
332 case 0: return bb.tail("ret void");
333 case 1: return bb.tail("ret {} {}", convert(types[0]), values[0]);
334 default: {
335 std::string prev = "undef";
336 auto type = convert(world().sigma(types));
337 for (size_t i = 0, n = values.size(); i != n; ++i) {
338 auto v_elem = values[i];
339 auto t_elem = convert(types[i]);
340 auto namei = "%ret_val." + std::to_string(i);
341 bb.tail("{} = insertvalue {} {}, {} {}, {}", namei, type, prev, t_elem, v_elem, i);
342 prev = namei;
343 }
344
345 bb.tail("ret {} {}", type, prev);
346 }
347 }
348 } else if (auto ex = app->callee()->isa<Extract>(); ex && Pi::isa_basicblock(app->callee_type())) {
349 // TODO use Branch
350 // emit_unsafe(app->arg());
351 // A call to an extract like constructed for conditionals (else,then)#cond (args)
352 for (auto callee_def : ex->tuple()->projs()) {
353 // dissect the tuple of lambdas
354 auto callee = callee_def->as_mut<Lam>();
355 // each callees type should agree with the argument type (should be checked by type checking).
356 // Especially, the number of vars should be the number of arguments.
357 // TODO: does not hold for complex arguments that are not tuples.
358 assert(callee->num_tvars() == app->num_targs());
359 size_t n = callee->num_tvars();
360 for (size_t i = 0; i != n; ++i) {
361 // emits the arguments one by one (TODO: handle together like before)
362 if (auto arg = emit_unsafe(app->arg(n, i)); !arg.empty()) {
363 auto phi = callee->var(n, i);
364 assert(!Axm::isa<mem::M>(phi->type()));
365 lam2bb_[callee].phis[phi].emplace_back(arg, id(lam, true));
366 locals_[phi] = id(phi);
367 }
368 }
369 }
370
371 auto c = emit(ex->index());
372 if (ex->tuple()->num_projs() == 2) {
373 auto [f, t] = ex->tuple()->projs<2>([this](auto def) { return emit(def); });
374 return bb.tail("br i1 {}, label {}, label {}", c, t, f);
375 } else {
376 auto t_c = convert(ex->index()->type());
377 bb.tail("switch {} {}, label {} [ ", t_c, c, emit(ex->tuple()->proj(0)));
378 for (auto i = 1u; i < ex->tuple()->num_projs(); i++)
379 print(bb.tail().back(), "{} {}, label {} ", t_c, std::to_string(i), emit(ex->tuple()->proj(i)));
380 print(bb.tail().back(), "]");
381 }
382 } else if (app->callee()->isa<Bot>()) {
383 return bb.tail("ret ; bottom: unreachable");
384 } else if (auto callee = Lam::isa_mut_basicblock(app->callee())) { // ordinary jump
385 size_t n = callee->num_tvars();
386 for (size_t i = 0; i != n; ++i) {
387 if (auto arg = emit_unsafe(app->arg(n, i)); !arg.empty()) {
388 auto phi = callee->var(n, i);
389 assert(!Axm::isa<mem::M>(phi->type()));
390 lam2bb_[callee].phis[phi].emplace_back(arg, id(lam, true));
391 locals_[phi] = id(phi);
392 }
393 }
394 return bb.tail("br label {}", id(callee));
395 } else if (auto longjmp = Axm::isa<clos::longjmp>(app)) {
396 declare("void @longjmp(i8*, i32) noreturn");
397
398 auto [mem, jbuf, tag] = app->args<3>();
399 emit_unsafe(mem);
400 auto v_jb = emit(jbuf);
401 auto v_tag = emit(tag);
402 bb.tail("call void @longjmp(i8* {}, i32 {})", v_jb, v_tag);
403 return bb.tail("unreachable");
404 } else if (Pi::isa_returning(app->callee_type())) { // function call
405 auto v_callee = emit(app->callee());
406
407 std::vector<std::string> args;
408 auto app_args = app->args();
409 for (auto arg : app_args.view().rsubspan(1))
410 if (auto v_arg = emit_unsafe(arg); !v_arg.empty()) args.emplace_back(convert(arg->type()) + " " + v_arg);
411
412 if (app->args().back()->isa<Bot>()) {
413 // TODO: Perhaps it'd be better to simply η-wrap this prior to the BE...
414 assert(convert_ret_pi(app->callee_type()->ret_pi()) == "void");
415 bb.tail("call void {}({, })", v_callee, args);
416 return bb.tail("unreachable");
417 }
418
419 auto ret_lam = app->args().back()->as_mut<Lam>();
420 size_t num_vars = ret_lam->num_vars();
421 size_t n = 0;
422 DefVec values(num_vars);
423 DefVec types(num_vars);
424 for (auto var : ret_lam->vars()) {
425 if (Axm::isa<mem::M>(var->type())) continue;
426 values[n] = var;
427 types[n] = var->type();
428 ++n;
429 }
430
431 if (n == 0) {
432 bb.tail("call void {}({, })", v_callee, args);
433 } else {
434 auto name = "%" + app->unique_name() + "ret";
435 auto t_ret = convert_ret_pi(ret_lam->type());
436 bb.tail("{} = call {} {}({, })", name, t_ret, v_callee, args);
437
438 for (size_t i = 0, e = ret_lam->num_vars(); i != e; ++i) {
439 auto phi = ret_lam->var(i);
440 if (Axm::isa<mem::M>(phi->type())) continue;
441
442 auto namei = name;
443 if (e > 2) {
444 namei += '.' + std::to_string(i - 1);
445 bb.tail("{} = extractvalue {} {}, {}", namei, t_ret, name, i - 1);
446 }
447 assert(!Axm::isa<mem::M>(phi->type()));
448 lam2bb_[ret_lam].phis[phi].emplace_back(namei, id(lam, true));
449 locals_[phi] = id(phi);
450 }
451 }
452
453 return bb.tail("br label {}", id(ret_lam));
454 }
455}
456
457std::string Emitter::emit_bb(BB& bb, const Def* def) {
458 if (auto lam = def->isa<Lam>()) return id(lam);
459
460 auto name = id(def);
461 std::string op;
462
463 auto emit_tuple = [&](const Def* tuple) {
464 if (isa_mem_sigma_2(tuple->type())) {
465 emit_unsafe(tuple->proj(2, 0));
466 return emit(tuple->proj(2, 1));
467 }
468
469 if (is_const(tuple)) {
470 bool is_array = tuple->type()->isa<Arr>();
471
472 std::string s;
473 s += is_array ? "[" : "{";
474 auto sep = "";
475 for (size_t i = 0, n = tuple->num_projs(); i != n; ++i) {
476 auto e = tuple->proj(n, i);
477 if (auto v_elem = emit_unsafe(e); !v_elem.empty()) {
478 auto t_elem = convert(e->type());
479 s += sep + t_elem + " " + v_elem;
480 sep = ", ";
481 }
482 }
483
484 return s += is_array ? "]" : "}";
485 }
486
487 std::string prev = "undef";
488 auto t = convert(tuple->type());
489 for (size_t src = 0, dst = 0, n = tuple->num_projs(); src != n; ++src) {
490 auto e = tuple->proj(n, src);
491 if (auto elem = emit_unsafe(e); !elem.empty()) {
492 auto elem_t = convert(e->type());
493 // TODO: check dst vs src
494 auto namei = name + "." + std::to_string(dst);
495 prev = bb.assign(namei, "insertvalue {} {}, {} {}, {}", t, prev, elem_t, elem, dst);
496 dst++;
497 }
498 }
499 return prev;
500 };
501
502 if (def->isa<Var>()) {
503 auto ts = def->type()->projs();
504 if (std::ranges::any_of(ts, [](auto t) { return Axm::isa<mem::M>(t); })) return {};
505 return emit_tuple(def);
506 }
507
508 auto emit_gep_index = [&](const Def* index) {
509 auto v_i = emit(index);
510 auto t_i = convert(index->type());
511
512 if (auto size = Idx::isa(index->type())) {
513 if (auto w = Idx::size2bitwidth(size); w && *w < 64) {
514 v_i = bb.assign(name + ".zext",
515 "zext {} {} to i{} ; add one more bit for gep index as it is treated as signed value",
516 t_i, v_i, *w + 1);
517 t_i = "i" + std::to_string(*w + 1);
518 }
519 }
520
521 return std::pair(v_i, t_i);
522 };
523
524 if (auto lit = def->isa<Lit>()) {
525 if (lit->type()->isa<Nat>() || Idx::isa(lit->type())) {
526 return std::to_string(lit->get());
527 } else if (auto w = math::isa_f(lit->type())) {
528 std::stringstream s;
529 u64 hex;
530
531 switch (*w) {
532 case 16:
533 s << "0xH" << std::setfill('0') << std::setw(4) << std::right << std::hex << lit->get<u16>();
534 return s.str();
535 case 32: {
536 hex = std::bit_cast<u64>(f64(lit->get<f32>()));
537 break;
538 }
539 case 64: hex = lit->get<u64>(); break;
540 default: fe::unreachable();
541 }
542
543 s << "0x" << std::setfill('0') << std::setw(16) << std::right << std::hex << hex;
544 return s.str();
545 }
546 fe::unreachable();
547 } else if (def->isa<Bot>()) {
548 return "undef";
549 } else if (auto top = def->isa<Top>()) {
550 if (Axm::isa<mem::M>(top->type())) return {};
551 // bail out to error below
552 } else if (auto tuple = def->isa<Tuple>()) {
553 return emit_tuple(tuple);
554 } else if (auto pack = def->isa<Pack>()) {
555 if (auto lit = Lit::isa(pack->body()); lit && *lit == 0) return "zeroinitializer";
556 return emit_tuple(pack);
557 } else if (auto sel = Select(def)) {
558 auto t = convert(sel.extract()->type());
559 auto [elem_a, elem_b] = sel.pair()->projs<2>([&](auto e) { return emit_unsafe(e); });
560 auto cond_t = convert(sel.cond()->type());
561 auto cond = emit(sel.cond());
562 return bb.assign(name, "select {} {}, {} {}, {} {}", cond_t, cond, t, elem_b, t, elem_a);
563 } else if (auto extract = def->isa<Extract>()) {
564 auto tuple = extract->tuple();
565 auto index = extract->index();
566 auto v_tup = emit_unsafe(tuple);
567
568 // this exact location is important: after emitting the tuple -> ordering of mem ops
569 // before emitting the index, as it might be a weird value for mem vars.
570 if (Axm::isa<mem::M>(extract->type())) return {};
571
572 auto t_tup = convert(tuple->type());
573 if (auto li = Lit::isa(index)) {
574 if (isa_mem_sigma_2(tuple->type())) return v_tup;
575 // Adjust index, if mem is present.
576 auto v_i = Axm::isa<mem::M>(tuple->proj(0)->type()) ? std::to_string(*li - 1) : std::to_string(*li);
577 return bb.assign(name, "extractvalue {} {}, {}", t_tup, v_tup, v_i);
578 }
579
580 auto t_elem = convert(extract->type());
581 auto [v_i, t_i] = emit_gep_index(index);
582
583 print(lam2bb_[root()].body().emplace_front(),
584 "{}.alloca = alloca {} ; copy to alloca to emulate extract with store + gep + load", name, t_tup);
585 print(bb.body().emplace_back(), "store {} {}, {}* {}.alloca", t_tup, v_tup, t_tup, name);
586 print(bb.body().emplace_back(), "{}.gep = getelementptr inbounds {}, {}* {}.alloca, i64 0, {} {}", name, t_tup,
587 t_tup, name, t_i, v_i);
588 return bb.assign(name, "load {}, {}* {}.gep", t_elem, t_elem, name);
589 } else if (auto insert = def->isa<Insert>()) {
590 assert(!Axm::isa<mem::M>(insert->tuple()->proj(0)->type()));
591 auto t_tup = convert(insert->tuple()->type());
592 auto t_val = convert(insert->value()->type());
593 auto v_tup = emit(insert->tuple());
594 auto v_val = emit(insert->value());
595 if (auto idx = Lit::isa(insert->index())) {
596 auto v_idx = emit(insert->index());
597 return bb.assign(name, "insertvalue {} {}, {} {}, {}", t_tup, v_tup, t_val, v_val, v_idx);
598 } else {
599 auto t_elem = convert(insert->value()->type());
600 auto [v_i, t_i] = emit_gep_index(insert->index());
601 print(lam2bb_[root()].body().emplace_front(),
602 "{}.alloca = alloca {} ; copy to alloca to emulate insert with store + gep + load", name, t_tup);
603 print(bb.body().emplace_back(), "store {} {}, {}* {}.alloca", t_tup, v_tup, t_tup, name);
604 print(bb.body().emplace_back(), "{}.gep = getelementptr inbounds {}, {}* {}.alloca, i64 0, {} {}", name,
605 t_tup, t_tup, name, t_i, v_i);
606 print(bb.body().emplace_back(), "store {} {}, {}* {}.gep", t_val, v_val, t_val, name);
607 return bb.assign(name, "load {}, {}* {}.alloca", t_tup, t_tup, name);
608 }
609 } else if (auto global = def->isa<Global>()) {
610 auto v_init = emit(global->init());
611 auto [pointee, addr_space] = Axm::as<mem::Ptr>(global->type())->args<2>();
612 print(vars_decls_, "{} = global {} {}\n", name, convert(pointee), v_init);
613 return globals_[global] = name;
614 } else if (auto nat = Axm::isa<core::nat>(def)) {
615 auto [a, b] = nat->args<2>([this](auto def) { return emit(def); });
616
617 switch (nat.id()) {
618 case core::nat::add: op = "add"; break;
619 case core::nat::sub: op = "sub"; break;
620 case core::nat::mul: op = "mul"; break;
621 }
622
623 return bb.assign(name, "{} nsw nuw i64 {}, {}", op, a, b);
624 } else if (auto ncmp = Axm::isa<core::ncmp>(def)) {
625 auto [a, b] = ncmp->args<2>([this](auto def) { return emit(def); });
626 op = "icmp ";
627
628 switch (ncmp.id()) {
629 // clang-format off
630 case core::ncmp::e: op += "eq" ; break;
631 case core::ncmp::ne: op += "ne" ; break;
632 case core::ncmp::g: op += "ugt"; break;
633 case core::ncmp::ge: op += "uge"; break;
634 case core::ncmp::l: op += "ult"; break;
635 case core::ncmp::le: op += "ule"; break;
636 // clang-format on
637 default: fe::unreachable();
638 }
639
640 return bb.assign(name, "{} i64 {}, {}", op, a, b);
641 } else if (auto idx = Axm::isa<core::idx>(def)) {
642 auto x = emit(idx->arg());
643 auto s = *Idx::size2bitwidth(Idx::isa(idx->type()));
644 auto t = convert(idx->type());
645 if (s < 64) return bb.assign(name, "trunc i64 {} to {}", x, t);
646 return x;
647 } else if (auto bit1 = Axm::isa<core::bit1>(def)) {
648 assert(bit1.id() == core::bit1::neg);
649 auto x = emit(bit1->arg());
650 auto t = convert(bit1->type());
651 return bb.assign(name, "xor {} -1, {}", t, x);
652 } else if (auto bit2 = Axm::isa<core::bit2>(def)) {
653 auto [a, b] = bit2->args<2>([this](auto def) { return emit(def); });
654 auto t = convert(bit2->type());
655
656 auto neg = [&](std::string_view x) { return bb.assign(name + ".neg", "xor {} -1, {}", t, x); };
657
658 switch (bit2.id()) {
659 // clang-format off
660 case core::bit2::and_: return bb.assign(name, "and {} {}, {}", t, a, b);
661 case core::bit2:: or_: return bb.assign(name, "or {} {}, {}", t, a, b);
662 case core::bit2::xor_: return bb.assign(name, "xor {} {}, {}", t, a, b);
663 case core::bit2::nand: return neg(bb.assign(name, "and {} {}, {}", t, a, b));
664 case core::bit2:: nor: return neg(bb.assign(name, "or {} {}, {}", t, a, b));
665 case core::bit2::nxor: return neg(bb.assign(name, "xor {} {}, {}", t, a, b));
666 case core::bit2:: iff: return bb.assign(name, "and {} {}, {}", neg(a), b);
667 case core::bit2::niff: return bb.assign(name, "or {} {}, {}", neg(a), b);
668 // clang-format on
669 default: fe::unreachable();
670 }
671 } else if (auto shr = Axm::isa<core::shr>(def)) {
672 auto [a, b] = shr->args<2>([this](auto def) { return emit(def); });
673 auto t = convert(shr->type());
674
675 switch (shr.id()) {
676 case core::shr::a: op = "ashr"; break;
677 case core::shr::l: op = "lshr"; break;
678 }
679
680 return bb.assign(name, "{} {} {}, {}", op, t, a, b);
681 } else if (auto wrap = Axm::isa<core::wrap>(def)) {
682 auto [mode, ab] = wrap->uncurry_args<2>();
683 auto [a, b] = ab->projs<2>([this](auto def) { return emit(def); });
684 auto t = convert(wrap->type());
685 auto lmode = Lit::as(mode);
686
687 switch (wrap.id()) {
688 case core::wrap::add: op = "add"; break;
689 case core::wrap::sub: op = "sub"; break;
690 case core::wrap::mul: op = "mul"; break;
691 case core::wrap::shl: op = "shl"; break;
692 }
693
694 if (lmode & core::Mode::nuw) op += " nuw";
695 if (lmode & core::Mode::nsw) op += " nsw";
696
697 return bb.assign(name, "{} {} {}, {}", op, t, a, b);
698 } else if (auto div = Axm::isa<core::div>(def)) {
699 auto [m, xy] = div->args<2>();
700 auto [x, y] = xy->projs<2>();
701 auto t = convert(x->type());
702 emit_unsafe(m);
703 auto a = emit(x);
704 auto b = emit(y);
705
706 switch (div.id()) {
707 case core::div::sdiv: op = "sdiv"; break;
708 case core::div::udiv: op = "udiv"; break;
709 case core::div::srem: op = "srem"; break;
710 case core::div::urem: op = "urem"; break;
711 }
712
713 return bb.assign(name, "{} {} {}, {}", op, t, a, b);
714 } else if (auto icmp = Axm::isa<core::icmp>(def)) {
715 auto [a, b] = icmp->args<2>([this](auto def) { return emit(def); });
716 auto t = convert(icmp->arg(0)->type());
717 op = "icmp ";
718
719 switch (icmp.id()) {
720 // clang-format off
721 case core::icmp::e: op += "eq" ; break;
722 case core::icmp::ne: op += "ne" ; break;
723 case core::icmp::sg: op += "sgt"; break;
724 case core::icmp::sge: op += "sge"; break;
725 case core::icmp::sl: op += "slt"; break;
726 case core::icmp::sle: op += "sle"; break;
727 case core::icmp::ug: op += "ugt"; break;
728 case core::icmp::uge: op += "uge"; break;
729 case core::icmp::ul: op += "ult"; break;
730 case core::icmp::ule: op += "ule"; break;
731 // clang-format on
732 default: fe::unreachable();
733 }
734
735 return bb.assign(name, "{} {} {}, {}", op, t, a, b);
736 } else if (auto extr = Axm::isa<core::extrema>(def)) {
737 auto [x, y] = extr->args<2>();
738 auto t = convert(x->type());
739 auto a = emit(x);
740 auto b = emit(y);
741 std::string f = "llvm.";
742 switch (extr.id()) {
743 case core::extrema::Sm: f += "smin."; break;
744 case core::extrema::SM: f += "smax."; break;
745 case core::extrema::sm: f += "umin."; break;
746 case core::extrema::sM: f += "umax."; break;
747 }
748 f += t;
749 declare("{} @{}({}, {})", t, f, t, t);
750 return bb.assign(name, "tail call {} @{}({} {}, {} {})", t, f, t, a, t, b);
751 } else if (auto abs = Axm::isa<core::abs>(def)) {
752 auto [m, x] = abs->args<2>();
753 auto t = convert(x->type());
754 auto a = emit(x);
755 std::string f = "llvm.abs." + t;
756 declare("{} @{}({}, {})", t, f, t, "i1");
757 return bb.assign(name, "tail call {} @{}({} {}, {} {})", t, f, t, a, "i1", "1");
758 } else if (auto conv = Axm::isa<core::conv>(def)) {
759 auto v_src = emit(conv->arg());
760 auto t_src = convert(conv->arg()->type());
761 auto t_dst = convert(conv->type());
762
763 nat_t w_src = *Idx::size2bitwidth(Idx::isa(conv->arg()->type()));
764 nat_t w_dst = *Idx::size2bitwidth(Idx::isa(conv->type()));
765
766 if (w_src == w_dst) return v_src;
767
768 switch (conv.id()) {
769 case core::conv::s: op = w_src < w_dst ? "sext" : "trunc"; break;
770 case core::conv::u: op = w_src < w_dst ? "zext" : "trunc"; break;
771 }
772
773 return bb.assign(name, "{} {} {} to {}", op, t_src, v_src, t_dst);
774 } else if (auto bitcast = Axm::isa<core::bitcast>(def)) {
775 auto dst_type_ptr = Axm::isa<mem::Ptr>(bitcast->type());
776 auto src_type_ptr = Axm::isa<mem::Ptr>(bitcast->arg()->type());
777 auto v_src = emit(bitcast->arg());
778 auto t_src = convert(bitcast->arg()->type());
779 auto t_dst = convert(bitcast->type());
780
781 if (auto lit = Lit::isa(bitcast->arg()); lit && *lit == 0) return "zeroinitializer";
782 // clang-format off
783 if (src_type_ptr && dst_type_ptr) return bb.assign(name, "bitcast {} {} to {}", t_src, v_src, t_dst);
784 if (src_type_ptr) return bb.assign(name, "ptrtoint {} {} to {}", t_src, v_src, t_dst);
785 if (dst_type_ptr) return bb.assign(name, "inttoptr {} {} to {}", t_src, v_src, t_dst);
786 // clang-format on
787
788 auto size2width = [&](const Def* type) {
789 if (type->isa<Nat>()) return 64_n;
790 if (auto size = Idx::isa(type)) return *Idx::size2bitwidth(size);
791 return 0_n;
792 };
793
794 auto src_size = size2width(bitcast->arg()->type());
795 auto dst_size = size2width(bitcast->type());
796
797 op = "bitcast";
798 if (src_size && dst_size) {
799 if (src_size == dst_size) return v_src;
800 op = (src_size < dst_size) ? "zext" : "trunc";
801 }
802 return bb.assign(name, "{} {} {} to {}", op, t_src, v_src, t_dst);
803 } else if (auto lea = Axm::isa<mem::lea>(def)) {
804 auto [ptr, i] = lea->args<2>();
805 auto pointee = Axm::as<mem::Ptr>(ptr->type())->arg(0);
806 auto v_ptr = emit(ptr);
807 auto t_pointee = convert(pointee);
808 auto t_ptr = convert(ptr->type());
809 if (pointee->isa<Sigma>())
810 return bb.assign(name, "getelementptr inbounds {}, {} {}, i64 0, i32 {}", t_pointee, t_ptr, v_ptr,
811 Lit::as(i));
812
813 assert(pointee->isa<Arr>());
814 auto [v_i, t_i] = emit_gep_index(i);
815
816 return bb.assign(name, "getelementptr inbounds {}, {} {}, i64 0, {} {}", t_pointee, t_ptr, v_ptr, t_i, v_i);
817 } else if (auto malloc = Axm::isa<mem::malloc>(def)) {
818 declare("i8* @malloc(i64)");
819
820 emit_unsafe(malloc->arg(0));
821 auto size = emit(malloc->arg(1));
822 auto ptr_t = convert(Axm::as<mem::Ptr>(def->proj(1)->type()));
823 bb.assign(name + "i8", "call i8* @malloc(i64 {})", size);
824 return bb.assign(name, "bitcast i8* {} to {}", name + "i8", ptr_t);
825 } else if (auto free = Axm::isa<mem::free>(def)) {
826 declare("void @free(i8*)");
827 emit_unsafe(free->arg(0));
828 auto ptr = emit(free->arg(1));
829 auto ptr_t = convert(Axm::as<mem::Ptr>(free->arg(1)->type()));
830
831 bb.assign(name + "i8", "bitcast {} {} to i8*", ptr_t, ptr);
832 bb.tail("call void @free(i8* {})", name + "i8");
833 return {};
834 } else if (auto mslot = Axm::isa<mem::mslot>(def)) {
835 auto [Ta, msi] = mslot->uncurry_args<2>();
836 auto [pointee, addr_space] = Ta->projs<2>();
837 auto [mem, _, __] = msi->projs<3>();
838 emit_unsafe(mslot->arg(0));
839 // TODO array with size
840 // auto v_size = emit(mslot->arg(1));
841 print(bb.body().emplace_back(), "{} = alloca {}", name, convert(pointee));
842 return name;
843 } else if (auto free = Axm::isa<mem::free>(def)) {
844 declare("void @free(i8*)");
845
846 emit_unsafe(free->arg(0));
847 auto v_ptr = emit(free->arg(1));
848 auto t_ptr = convert(Axm::as<mem::Ptr>(free->arg(1)->type()));
849
850 bb.assign(name + "i8", "bitcast {} {} to i8*", t_ptr, v_ptr);
851 bb.tail("call void @free(i8* {})", name + "i8");
852 return {};
853 } else if (auto load = Axm::isa<mem::load>(def)) {
854 emit_unsafe(load->arg(0));
855 auto v_ptr = emit(load->arg(1));
856 auto t_ptr = convert(load->arg(1)->type());
857 auto t_pointee = convert(Axm::as<mem::Ptr>(load->arg(1)->type())->arg(0));
858 return bb.assign(name, "load {}, {} {}", t_pointee, t_ptr, v_ptr);
859 } else if (auto store = Axm::isa<mem::store>(def)) {
860 emit_unsafe(store->arg(0));
861 auto v_ptr = emit(store->arg(1));
862 auto v_val = emit(store->arg(2));
863 auto t_ptr = convert(store->arg(1)->type());
864 auto t_val = convert(store->arg(2)->type());
865 print(bb.body().emplace_back(), "store {} {}, {} {}", t_val, v_val, t_ptr, v_ptr);
866 return {};
867 } else if (auto q = Axm::isa<clos::alloc_jmpbuf>(def)) {
868 declare("i64 @jmpbuf_size()");
869
870 emit_unsafe(q->arg());
871 auto size = name + ".size";
872 bb.assign(size, "call i64 @jmpbuf_size()");
873 return bb.assign(name, "alloca i8, i64 {}", size);
874 } else if (auto setjmp = Axm::isa<clos::setjmp>(def)) {
875 declare("i32 @_setjmp(i8*) returns_twice");
876
877 auto [mem, jmpbuf] = setjmp->arg()->projs<2>();
878 emit_unsafe(mem);
879 auto v_jb = emit(jmpbuf);
880 return bb.assign(name, "call i32 @_setjmp(i8* {})", v_jb);
881 } else if (auto arith = Axm::isa<math::arith>(def)) {
882 auto [mode, ab] = arith->uncurry_args<2>();
883 auto [a, b] = ab->projs<2>([this](auto def) { return emit(def); });
884 auto t = convert(arith->type());
885 auto lmode = Lit::as(mode);
886
887 switch (arith.id()) {
888 case math::arith::add: op = "fadd"; break;
889 case math::arith::sub: op = "fsub"; break;
890 case math::arith::mul: op = "fmul"; break;
891 case math::arith::div: op = "fdiv"; break;
892 case math::arith::rem: op = "frem"; break;
893 }
894
895 if (lmode == math::Mode::fast)
896 op += " fast";
897 else {
898 // clang-format off
899 if (lmode & math::Mode::nnan ) op += " nnan";
900 if (lmode & math::Mode::ninf ) op += " ninf";
901 if (lmode & math::Mode::nsz ) op += " nsz";
902 if (lmode & math::Mode::arcp ) op += " arcp";
903 if (lmode & math::Mode::contract) op += " contract";
904 if (lmode & math::Mode::afn ) op += " afn";
905 if (lmode & math::Mode::reassoc ) op += " reassoc";
906 // clang-format on
907 }
908
909 return bb.assign(name, "{} {} {}, {}", op, t, a, b);
910 } else if (auto tri = Axm::isa<math::tri>(def)) {
911 auto a = emit(tri->arg());
912 auto t = convert(tri->type());
913
914 std::string f;
915
916 if (tri.id() == math::tri::sin) {
917 f = "llvm.sin"s + llvm_suffix(tri->type());
918 } else if (tri.id() == math::tri::cos) {
919 f = "llvm.cos"s + llvm_suffix(tri->type());
920 } else {
921 if (tri.sub() & sub_t(math::tri::a)) f += "a";
922
923 switch (math::tri((tri.id() & 0x3) | Annex::base<math::tri>())) {
924 case math::tri::sin: f += "sin"; break;
925 case math::tri::cos: f += "cos"; break;
926 case math::tri::tan: f += "tan"; break;
927 case math::tri::ahFF: error("this axm is supposed to be unused");
928 default: fe::unreachable();
929 }
930
931 if (tri.sub() & sub_t(math::tri::h)) f += "h";
932 f += math_suffix(tri->type());
933 }
934
935 declare("{} @{}({})", t, f, t);
936 return bb.assign(name, "tail call {} @{}({} {})", t, f, t, a);
937 } else if (auto extrema = Axm::isa<math::extrema>(def)) {
938 auto [a, b] = extrema->args<2>([this](auto def) { return emit(def); });
939 auto t = convert(extrema->type());
940 std::string f = "llvm.";
941 switch (extrema.id()) {
942 case math::extrema::fmin: f += "minnum"; break;
943 case math::extrema::fmax: f += "maxnum"; break;
944 case math::extrema::ieee754min: f += "minimum"; break;
945 case math::extrema::ieee754max: f += "maximum"; break;
946 }
947 f += llvm_suffix(extrema->type());
948
949 declare("{} @{}({}, {})", t, f, t, t);
950 return bb.assign(name, "tail call {} @{}({} {}, {} {})", t, f, t, a, t, b);
951 } else if (auto pow = Axm::isa<math::pow>(def)) {
952 auto [a, b] = pow->args<2>([this](auto def) { return emit(def); });
953 auto t = convert(pow->type());
954 std::string f = "llvm.pow";
955 f += llvm_suffix(pow->type());
956 declare("{} @{}({}, {})", t, f, t, t);
957 return bb.assign(name, "tail call {} @{}({} {}, {} {})", t, f, t, a, t, b);
958 } else if (auto rt = Axm::isa<math::rt>(def)) {
959 auto a = emit(rt->arg());
960 auto t = convert(rt->type());
961 std::string f;
962 if (rt.id() == math::rt::sq)
963 f = "llvm.sqrt"s + llvm_suffix(rt->type());
964 else
965 f = "cbrt"s += math_suffix(rt->type());
966 declare("{} @{}({})", t, f, t);
967 return bb.assign(name, "tail call {} @{}({} {})", t, f, t, a);
968 } else if (auto exp = Axm::isa<math::exp>(def)) {
969 auto a = emit(exp->arg());
970 auto t = convert(exp->type());
971 std::string f = "llvm.";
972 f += (exp.sub() & sub_t(math::exp::log)) ? "log" : "exp";
973 f += (exp.sub() & sub_t(math::exp::bin)) ? "2" : (exp.sub() & sub_t(math::exp::dec)) ? "10" : "";
974 f += llvm_suffix(exp->type());
975 // TODO doesn't work for exp10"
976 declare("{} @{}({})", t, f, t);
977 return bb.assign(name, "tail call {} @{}({} {})", t, f, t, a);
978 } else if (auto er = Axm::isa<math::er>(def)) {
979 auto a = emit(er->arg());
980 auto t = convert(er->type());
981 auto f = er.id() == math::er::f ? "erf"s : "erfc"s;
982 f += math_suffix(er->type());
983 declare("{} @{}({})", t, f, t);
984 return bb.assign(name, "tail call {} @{}({} {})", t, f, t, a);
985 } else if (auto gamma = Axm::isa<math::gamma>(def)) {
986 auto a = emit(gamma->arg());
987 auto t = convert(gamma->type());
988 std::string f = gamma.id() == math::gamma::t ? "tgamma" : "lgamma";
989 f += math_suffix(gamma->type());
990 declare("{} @{}({})", t, f, t);
991 return bb.assign(name, "tail call {} @{}({} {})", t, f, t, a);
992 } else if (auto cmp = Axm::isa<math::cmp>(def)) {
993 auto [a, b] = cmp->args<2>([this](auto def) { return emit(def); });
994 auto t = convert(cmp->arg(0)->type());
995 op = "fcmp ";
996
997 switch (cmp.id()) {
998 // clang-format off
999 case math::cmp:: e: op += "oeq"; break;
1000 case math::cmp:: l: op += "olt"; break;
1001 case math::cmp:: le: op += "ole"; break;
1002 case math::cmp:: g: op += "ogt"; break;
1003 case math::cmp:: ge: op += "oge"; break;
1004 case math::cmp:: ne: op += "one"; break;
1005 case math::cmp:: o: op += "ord"; break;
1006 case math::cmp:: u: op += "uno"; break;
1007 case math::cmp:: ue: op += "ueq"; break;
1008 case math::cmp:: ul: op += "ult"; break;
1009 case math::cmp::ule: op += "ule"; break;
1010 case math::cmp:: ug: op += "ugt"; break;
1011 case math::cmp::uge: op += "uge"; break;
1012 case math::cmp::une: op += "une"; break;
1013 // clang-format on
1014 default: fe::unreachable();
1015 }
1016
1017 return bb.assign(name, "{} {} {}, {}", op, t, a, b);
1018 } else if (auto conv = Axm::isa<math::conv>(def)) {
1019 auto v_src = emit(conv->arg());
1020 auto t_src = convert(conv->arg()->type());
1021 auto t_dst = convert(conv->type());
1022
1023 auto s_src = math::isa_f(conv->arg()->type());
1024 auto s_dst = math::isa_f(conv->type());
1025
1026 switch (conv.id()) {
1027 case math::conv::f2f: op = s_src < s_dst ? "fpext" : "fptrunc"; break;
1028 case math::conv::s2f: op = "sitofp"; break;
1029 case math::conv::u2f: op = "uitofp"; break;
1030 case math::conv::f2s: op = "fptosi"; break;
1031 case math::conv::f2u: op = "fptoui"; break;
1032 }
1033
1034 return bb.assign(name, "{} {} {} to {}", op, t_src, v_src, t_dst);
1035 } else if (auto abs = Axm::isa<math::abs>(def)) {
1036 auto a = emit(abs->arg());
1037 auto t = convert(abs->type());
1038 std::string f = "llvm.fabs";
1039 f += llvm_suffix(abs->type());
1040 declare("{} @{}({})", t, f, t);
1041 return bb.assign(name, "tail call {} @{}({} {})", t, f, t, a);
1042 } else if (auto round = Axm::isa<math::round>(def)) {
1043 auto a = emit(round->arg());
1044 auto t = convert(round->type());
1045 std::string f = "llvm.";
1046 switch (round.id()) {
1047 case math::round::f: f += "floor"; break;
1048 case math::round::c: f += "ceil"; break;
1049 case math::round::r: f += "round"; break;
1050 case math::round::t: f += "trunc"; break;
1051 }
1052 f += llvm_suffix(round->type());
1053 declare("{} @{}({})", t, f, t);
1054 return bb.assign(name, "tail call {} @{}({} {})", t, f, t, a);
1055 }
1056 error("unhandled def in LLVM backend: {} : {}", def, def->type());
1057}
1058
1059void emit(World& world, std::ostream& ostream) {
1060 Emitter emitter(world, ostream);
1061 emitter.run();
1062}
1063
1064int compile(World& world, std::string name) {
1065#ifdef _WIN32
1066 auto exe = name + ".exe"s;
1067#else
1068 auto exe = name;
1069#endif
1070 return compile(world, name + ".ll"s, exe);
1071}
1072
1073int compile(World& world, std::string ll, std::string out) {
1074 std::ofstream ofs(ll);
1075 emit(world, ofs);
1076 ofs.close();
1077 auto cmd = fmt("clang \"{}\" -o \"{}\" -Wno-override-module", ll, out);
1078 return sys::system(cmd);
1079}
1080
1081int compile_and_run(World& world, std::string name, std::string args) {
1082 if (compile(world, name) == 0) return sys::run(name, args);
1083 error("compilation failed");
1084}
1085
1086} // namespace mim::ll
A (possibly paramterized) Array.
Definition tuple.h:117
static auto isa(const Def *def)
Definition axm.h:107
static auto as(const Def *def)
Definition axm.h:129
Lam * root() const
Definition phase.h:257
Base class for all Defs.
Definition def.h:251
const Def * proj(nat_t a, nat_t i) const
Similar to World::extract while assuming an arity of a, but also works on Sigmas and Arrays.
Definition def.cpp:585
T * isa_mut() const
If this is mutable, it will cast constness away and perform a dynamic_cast to T.
Definition def.h:485
auto projs(F f) const
Splits this Def via Def::projections into an Array (if A == std::dynamic_extent) or std::array (other...
Definition def.h:390
nat_t num_vars() noexcept
Definition def.h:429
const Def * type() const noexcept
Yields the "raw" type of this Def (maybe nullptr).
Definition def.cpp:444
auto vars(F f) noexcept
Definition def.h:429
std::string unique_name() const
name + "_" + Def::gid
Definition def.cpp:576
Extracts from a Sigma or Array-typed Extract::tuple the element at position Extract::index.
Definition tuple.h:206
static constexpr nat_t size2bitwidth(nat_t n)
Definition def.h:891
static const Def * isa(const Def *def)
Checks if def is a Idx s and returns s or nullptr otherwise.
Definition def.cpp:608
Creates a new Tuple / Pack by inserting Insert::value at position Insert::index into Insert::tuple.
Definition tuple.h:233
A function.
Definition lam.h:111
static Lam * isa_mut_basicblock(const Def *d)
Only for mutables.
Definition lam.h:146
const Pi * type() const
Definition lam.h:131
const Def * body() const
Definition lam.h:124
static std::optional< T > isa(const Def *def)
Definition def.h:824
static T as(const Def *def)
Definition def.h:830
const Nest & nest() const
Definition phase.h:273
A (possibly paramterized) Tuple.
Definition tuple.h:166
virtual void run()
Entry point and generates some debug output; invokes Phase::start.
Definition phase.cpp:13
virtual void start()=0
Actual entry.
A dependent function type.
Definition lam.h:15
static const Pi * isa_basicblock(const Def *d)
Is this a continuation (Pi::isa_cn) that is not Pi::isa_returning?
Definition lam.h:52
const Pi * ret_pi() const
Yields the last Pi::dom, if Pi::isa_basicblock.
Definition lam.cpp:13
static const Pi * isa_returning(const Def *d)
Is this a continuation (Pi::isa_cn) which has a Pi::ret_pi?
Definition lam.h:50
static Schedule schedule(const Nest &)
Definition schedule.cpp:118
Matches (ff, tt)#cond - where cond is not a Literal.
Definition tuple.h:261
A dependent tuple type.
Definition tuple.h:20
World & world()
Definition pass.h:64
std::string_view name() const
Definition pass.h:67
Data constructor for a Sigma.
Definition tuple.h:68
A variable introduced by a binder (mutable).
Definition def.h:700
The World represents the whole program and manages creation of MimIR nodes (Defs).
Definition world.h:31
void emit_imported(Lam *)
Definition ll.cpp:257
Emitter(World &world, std::ostream &ostream)
Definition ll.cpp:119
std::string prepare()
Definition ll.cpp:271
void finalize()
Definition ll.cpp:287
void start() override
Actual entry.
Definition ll.cpp:246
std::string emit_bb(BB &, const Def *)
Definition ll.cpp:457
bool is_valid(std::string_view s)
Definition ll.cpp:122
mim::Emitter< std::string, std::string, BB, Emitter > Super
Definition ll.cpp:117
void emit_epilogue(Lam *)
Definition ll.cpp:316
void declare(const char *s, Args &&... args)
Definition ll.cpp:131
Definition ll.h:9
int compile_and_run(World &, std::string name, std::string args={})
Definition ll.cpp:1081
void emit(World &, std::ostream &)
Definition ll.cpp:1059
int compile(World &, std::string name)
Definition ll.cpp:1064
The clos Plugin
Definition clos.h:7
The core Plugin
Definition core.h:8
The math Plugin
Definition math.h:8
The mem Plugin
Definition mem.h:11
int run(std::string cmd, std::string args={})
Wraps sys::system and puts .exe at the back (Windows) and ./ at the front (otherwise) of cmd.
Definition sys.cpp:77
int system(std::string)
Wraps std::system and makes the return value usable.
Definition sys.cpp:71
u64 nat_t
Definition types.h:43
Vector< const Def * > DefVec
Definition def.h:77
u8 sub_t
Definition types.h:48
D bitcast(const S &src)
A bitcast from src of type S to D.
Definition util.h:23
std::ostream & print(std::ostream &os, const char *s)
Base case.
Definition print.cpp:5
double f64
Definition types.h:41
std::string fmt(const char *s, Args &&... args)
Wraps mim::print to output a formatted std:string.
Definition print.h:163
void error(Loc loc, const char *f, Args &&... args)
Definition dbg.h:125
float f32
Definition types.h:40
GIDMap< const Def *, To > DefMap
Definition def.h:73
TExt< true > Top
Definition lattice.h:172
TExt< false > Bot
Definition lattice.h:171
uint64_t u64
Definition types.h:34
@ Nat
Definition def.h:114
@ Pi
Definition def.h:114
@ Arr
Definition def.h:114
@ Sigma
Definition def.h:114
uint16_t u16
Definition types.h:34
static consteval flags_t base()
Definition plugin.h:119
std::deque< std::ostringstream > & tail()
Definition ll.cpp:92
void tail(const char *s, Args &&... args)
Definition ll.cpp:101
DefMap< std::deque< std::pair< std::string, std::string > > > phis
Definition ll.cpp:111
BB(const BB &)=delete
BB()=default
std::deque< std::ostringstream > & body()
Definition ll.cpp:91
BB(BB &&other) noexcept=default
friend void swap(BB &a, BB &b) noexcept
Definition ll.cpp:105
std::array< std::deque< std::ostringstream >, 3 > parts
Definition ll.cpp:112
std::deque< std::ostringstream > & head()
Definition ll.cpp:90
BB & operator=(BB other) noexcept
Definition ll.cpp:88
std::string assign(std::string_view name, const char *s, Args &&... args)
Definition ll.cpp:95