9 auto [a, b] = arg->
projs<2>();
10 auto [n, m] = callee->as<
App>()->decurry()->args<2>([](
auto def) {
return Lit::isa(def); });
11 if (n && *n == 0)
return b;
12 if (m && *m == 0)
return a;
18 auto& w = type->world();
19 auto [xs, x] = arg->
projs<2>();
21 if (
auto mut_pack = xs->isa_mut<
Pack>()) {
22 if (
auto imm = mut_pack->immutabilize())
29 for (
auto op :
tuple->ops())
30 if (op == x)
return w.lit_tt();
32 return tuple->is_closed() ? w.lit_ff() :
nullptr;
35 if (
auto pack = xs->isa<
Pack>()) {
36 if (pack->body() == x)
return w.lit_tt();
37 return pack->is_closed() ? w.lit_ff() :
nullptr;
44 auto& w = type->world();
45 auto callee = c->as<
App>();
46 auto is_os = callee->
arg();
47 auto [n_i, Is, n_o, Os, f] = is_os->
projs<5>();
48 auto [r, s] = callee->decurry()->args<2>();
57 if (lr && ls && *lr == 1 && *ls == 1)
return w.app(f, arg);
60 auto args = arg->
projs(*l_in);
62 if (lr && std::ranges::all_of(args, [](
const Def* arg) {
return arg->isa<
Prod>(); })) {
63 auto shapes = s->projs(*lr);
67 auto elems =
DefVec(*s_n, [&, f = f](
size_t s_i) {
68 auto inner_args =
DefVec(args.size(), [&](
size_t i) { return args[i]->proj(*s_n, s_i); });
70 return w.app(f, inner_args);
72 auto app_zip = w.app(w.annex<
zip>(), {w.lit_nat(*lr - 1), w.tuple(shapes.view().subspan(1))});
73 return w.app(w.app(app_zip, is_os), inner_args);
76 return w.tuple(elems);
auto projs(F f) const
Splits this Def via Def::projections into an Array (if A == std::dynamic_extent) or std::array (other...
static std::optional< T > isa(const Def *def)
A (possibly paramterized) Tuple.
Base class for Sigma and Tuple.
Data constructor for a Sigma.
const Def * normalize_cat(const Def *, const Def *callee, const Def *arg)
const Def * normalize_zip(const Def *type, const Def *c, const Def *arg)
const Def * normalize_contains(const Def *type, const Def *, const Def *arg)
Vector< const Def * > DefVec
const Def * cat_tuple(nat_t n, nat_t m, const Def *a, const Def *b)
#define MIM_tuple_NORMALIZER_IMPL